The geometric stability of Voronoi diagrams in normed spaces which are not uniformly convex
نویسنده
چکیده
The Voronoi diagram is a geometric object which is widely used in many areas. Recently it has been shown that under mild conditions Voronoi diagrams have a certain continuity property: small perturbations of the sites yield small perturbations in the shapes of the corresponding Voronoi cells. However, this result is based on the assumption that the ambient normed space is uniformly convex. Unfortunately, simple counterexamples show that if uniform convexity is removed, then instability can occur. Since Voronoi diagrams in normed spaces which are not uniformly convex do appear in theory and practice, e.g., in the plane with the Manhattan (`1) distance, it is natural to ask whether the stability property can be generalized to them, perhaps under additional assumptions. This paper shows that this is indeed the case assuming the unit sphere of the space has a certain (non-exotic) structure and the sites satisfy a certain “general position” condition related to it. The condition on the unit sphere is that it can be decomposed into at most one “rotund part” and at most finitely many non-degenerate convex parts. Along the way certain topological properties of Votonoi cells (e.g., that the induced bisectors are not “fat”) are proved. Date: April 29, 2013. 2010 Mathematics Subject Classification. 46N99, 68U05, 46B20, 65D18.
منابع مشابه
Zone diagrams in compact subsets of uniformly convex normed spaces
A zone diagram is a relatively new concept which has emerged in computational geometry and is related to Voronoi diagrams. Formally, it is a fixed point of a certain mapping, and neither its uniqueness nor its existence are obvious in advance. It has been studied by several authors, starting with T. Asano, J. Matoušek and T. Tokuyama, who considered the Euclidean plane with singleton sites, and...
متن کاملExistence of zone diagrams in compact subsets of uniformly convex spaces
A zone diagram is a relatively new concept which has emerged in computational geometry and is related to Voronoi diagrams. Formally, it is a fixed point of a certain mapping, and neither its uniqueness nor its existence are obvious in advance. It has been studied by several authors, starting with T. Asano, J. Matoušek and T. Tokuyama, who considered the Euclidean plane with singleton sites, and...
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملFixed points for total asymptotically nonexpansive mappings in a new version of bead space
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
متن کاملOn the Computation of Zone and Double Zone Diagrams
Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matoušek and T. Tokuyama introduced “implicit computational geometry” in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called “a zone diagram”. The implicit nature of zone diagrams implies, as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1212.1094 شماره
صفحات -
تاریخ انتشار 2012